2D-DIGE proteomic analysis identifies new potential therapeutic targets for adrenocortical carcinoma
نویسندگان
چکیده
Adrenocortical carcinoma (ACC) is a rare aggressive tumor with poor prognosis when metastatic at diagnosis. The tumor biology is still mostly unclear, justifying the limited specificity and efficacy of the anti-cancer drugs currently available. This study reports the first proteomic analysis of ACC by using two-dimensional-differential-in-gel-electrophoresis (2D-DIGE) to evaluate a differential protein expression profile between adrenocortical carcinoma and normal adrenal. Mass spectrometry, associated with 2D-DIGE analysis of carcinomas and normal adrenals, identified 22 proteins in 27 differentially expressed 2D spots, mostly overexpressed in ACC. Gene ontology analysis revealed that most of the proteins concurs towards a metabolic shift, called the Warburg effect, in adrenocortical cancer. The differential expression was validated by Western blot for Aldehyde-dehydrogenase-6-A1,Transferrin, Fascin-1,Lamin A/C,Adenylate-cyclase-associated-protein-1 and Ferredoxin-reductase. Moreover, immunohistochemistry performed on paraffin-embedded ACC and normal adrenal specimens confirmed marked positive staining for all 6 proteins diffusely expressed by neoplastic cells, compared with normal adrenal cortex.In conclusion, our preliminary findings reveal a different proteomic profile in adrenocortical carcinoma compared with normal adrenal cortex characterized by overexpression of mainly metabolic enzymes, thus suggesting the Warburg effect also occurs in ACC. These proteins may represent promising novel ACC biomarkers and potential therapeutic targets if validated in larger cohorts of patients.
منابع مشابه
Proteomics Approaches for Identification of Tumor Relevant Protein Targets in Pulmonary Squamous Cell Carcinoma by 2D-DIGE-MS
Potential markers for progression of pulmonary squamous cell carcinoma (SCC) were identified by examining samples of lung SCC and adjacent normal tissues using a combination of fluorescence two-dimensional difference gel electrophoresis (2D-DIGE), matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS), and electrospray ionization quadrupole-time of flight ma...
متن کاملUse of combination proteomic analysis to demonstrate molecular similarity of head and neck squamous cell carcinoma arising from different subsites.
OBJECTIVE To evaluate head and neck squamous cell carcinomas (HNSCCs) for differences in protein expression between oral cavity, oropharynx, larynx, and hypopharynx subsites. DESIGN Retrospective proteomic analysis using tissue microarray (TMA) and 2-dimensional difference gel electrophoresis (2D-DIGE). For the TMA, automated quantitative protein expression analysis was used to interrogate le...
متن کاملIdentification of proteins associated to multi-drug resistance in LoVo human colon cancer cells.
Multi-drug resistance (MDR) limits the effectiveness of chemotherapy. P-glycoprotein encoded by the MDR1 gene, is known to be implicated in MDR phenotype, but other factors could be determinant in MDR. The aim of this study was to investigate new molecular factors potentially associated with the MDR phenotype using a proteomic approach. Two dimensional fluorescence difference gel electrophoresi...
متن کاملThe Proteomic Profile of Pancreatic Cancer Cell Lines Corresponding to Carcinogenesis and Metastasis
To investigate the proteomic background of the carcinogenesis and progression of pancreatic cancer, the protein expression profiles of nine well-characterized pancreatic adenocarcinoma cell lines, whose metastatic potential was previously examined in a mouse xenograft model, and two immortalized pancreatic duct cell lines were examined. Two-dimensional difference gel electrophoresis (2D-DIGE) i...
متن کامل2D differential in-gel electrophoresis for the identification of esophageal scans cell cancer-specific protein markers.
The reproducibility of conventional two-dimensional (2D) gel electrophoresis can be improved using differential in-gel electrophoresis (DIGE), a new emerging technology for proteomic analysis. In DIGE, two pools of proteins are labeled with 1-(5-carboxypentyl)-1'-propylindocarbocyanine halide (Cy3) N-hydroxy-succinimidyl ester and 1-(5-carboxypentyl)-1'-methylindodi-carbocyanine halide (Cy5) N-...
متن کامل